Print

Identification

Field Value

Title

Inundation Maps for NSW Inland Floodplain Wetlands

Abstract

Under the NSW DPIE-EES Environmental Water Management Program the distribution and extent of inundation is monitored in large inland floodplain wetland assets which are targeted for environmental flow delivery and located in the NSW portion of the Murray-Darling Basin: Gwydir wetlands, Lowbidgee floodplain, Lower Lachlan wetlands, Macquarie Marshes, Barmah-Millewa Forest and Narran Lakes (since 2022-2023). Inundation maps are derived from image observations sourced from the satellite data sources of Landsat (30m pixel) and Sentinel-2 (10m pixel) for the period July 2014-June 2019. Image observations are automatically downloaded by NSW DPIE from the USGS (Unites State Geological Survey’s Earth Explorer website (http://earthexplorer.usgs.gov ) and the Copernicus Sentinel Open Access Hub (https://scihub.copernicus.eu/dhus/#/home ) as orthorectified images. NSW DPIE process these images to standardised surface reflectance (Flood et al. 2013). Image observations with high cloud coverage (>50%) are not considered because they cannot be processed. The inundation mapping procedure is a modified version of Thomas et. al (2015) which is a method to map inundation in vegetated floodplain wetlands using an integrated spectral response to water and vigorous vegetation. From each satellite image observation NSW DPIE-EES automatically generates a water index (Fisher et al. 2016) and the NDVI vegetation index. These indices are used to allocate inundated pixels to classes of open water, mixed water and vegetation, and dense vegetation cover that was inundated (Thomas et al. 2015). A process of pixel recoding is conducted to produce each inundation map. First all inundation classes are merged and allocated a value of one (1) whilst all other pixels are allocated a value of zero (0). Second, ancillary data is then used to identify irrigation infrastructure to do two things: locate inundated pixels within off-river storages (ORS) by recoding to a value of (2) and to remove cropped areas that have similar spectral properties to wetland vegetation by coding the pixels to a value of zero (0). Third, for observation dates affected by cloud shadow, which is often incorrectly detected as water, pixels are manually reclassified as cloud shadow by recoding them to a value of three (3). The final inundation classes are inundated (1), off-river storages with water (ors) (2), cloud shadow (3), and not inundated (0). Final inundation maps are clipped to the inland floodplain wetland boundaries.

The naming format of the files are: Wetland_date _sensor_inundation1_ors2_cloud3.tif or Wetland_path_date _sensor_inundation1_ors2_cloud3.tif

Wetland: bm = Barmah Millewa floodplain gw = Gwydir floodplain lachlan = Lachlan floodplain lo = Lowbidgee floodplain mm = Macquarie Marshes floodplain

Path: Specific to the Lachlan Date: Satellite image date processed Sensor: Sensor type- l7 (Landsat7; l8 (Landsat 8); s2 (Sentinel2) Inundation1: Inundated ors2: Off-River Storage with water cloud3: Cloud shadow (in filename if present)

References: Fisher, A., Flood, N. and Danaher, T. (2016). Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, 175, 167-182.

Flood, N., Danaher, T., Gill, T., & Gillingham, S. (2013). An operational scheme for deriving standardised surface reflectance from Landsat TM/ETM+ and SPOT HRG imagery for eastern Australia. Remote Sensing, 5, 83–109.

Thomas, R. F., Kingsford, R. T., Lu, Y., Cox, S. J., Sims, N. C. and Hunter, S. J., (2015). Mapping inundation in the heterogeneous floodplain wetlands of the Macquarie Marshes, using Landsat Thematic Mapper. Journal of Hydrology 524, 194-213.

Resource locator

Data Quality Statement

Name: Data Quality Statement

Protocol: WWW:DOWNLOAD-1.0-http--download

Description:

Data quality statement for Inundation Maps for NSW Inland Floodplain Wetlands

Function: download

2014-2019 Inundation Maps

Name: 2014-2019 Inundation Maps

Protocol: WWW:DOWNLOAD-1.0-http--download

Description:

Under the NSW DPIE-EES Environmental Water Management Program the distribution and extent of inundation is monitored in large inland floodplain wetland assets which are targeted for environmental flow delivery and located in the NSW portion of the Murray-Darling Basin: Gwydir wetlands, Lowbidgee floodplain, Lower Lachlan wetlands, Macquarie Marshes, and Barmah-Millewa Forest. Inundation maps are derived from image observations sourced from the satellite data sources of Landsat (30m pixel) and Sentinel-2 (10m pixel) for the period July 2014-June 2019. Image observations are automatically downloaded by NSW DPIE from the USGS (Unites State Geological Survey’s Earth Explorer website (http://earthexplorer.usgs.gov ) and the Copernicus Sentinel Open Access Hub (https://scihub.copernicus.eu/dhus/#/home ) as orthorectified images. NSW DPIE process these images to standardised surface reflectance (Flood et al. 2013). Image observations with high cloud coverage (>50%) are not considered because they cannot be processed. The inundation mapping procedure is a modified version of Thomas et. al (2015) which is a method to map inundation in vegetated floodplain wetlands using an integrated spectral response to water and vigorous vegetation. From each satellite image observation NSW DPIE-EES automatically generates a water index (Fisher et al. 2016) and the NDVI vegetation index. These indices are used to allocate inundated pixels to classes of open water, mixed water and vegetation, and dense vegetation cover that was inundated (Thomas et al. 2015). A process of pixel recoding is conducted to produce each inundation map. First all inundation classes are merged and allocated a value of one (1) whilst all other pixels are allocated a value of zero (0). Second, ancillary data is then used to identify irrigation infrastructure to do two things: locate inundated pixels within off-river storages (ORS) by recoding to a value of (2) and to remove cropped areas that have similar spectral properties to wetland vegetation by coding the pixels to a value of zero (0). Third, for observation dates affected by cloud shadow, which is often incorrectly detected as water, pixels are manually reclassified as cloud shadow by recoding them to a value of three (3). The final inundation classes are inundated (1), off-river storages with water (ors) (2), cloud shadow (3), and not inundated (0). Final inundation maps are clipped to the inland floodplain wetland boundaries.

The naming format of the files are: Wetland_date _sensor_inundation1_ors2_cloud3.img or Wetland_path_date _sensor_inundation1_ors2_cloud3.tif

Wetland: bm = Barmah Millewa floodplain gw = Gwydir floodplain lachlan = Lachlan floodplain lo = Lowbidgee floodplain mm = Macquarie Marshes floodplain

Path: Specific to the Lachlan Date: Satellite image date processed Sensor: Sensor type- l7 (Landsat7; l8 (Landsat 8); s2 (Sentinel2) Inundation1: Inundated ors2: Off-River Storage with water cloud3: Cloud shadow(in filename if it is present)

References: Fisher, A., Flood, N. and Danaher, T. (2016). Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, 175, 167-182.

Flood, N., Danaher, T., Gill, T., & Gillingham, S. (2013). An operational scheme for deriving standardised surface reflectance from Landsat TM/ETM+ and SPOT HRG imagery for eastern Australia. Remote Sensing, 5, 83–109.

Thomas, R. F., Kingsford, R. T., Lu, Y., Cox, S. J., Sims, N. C. and Hunter, S. J., (2015). Mapping inundation in the heterogeneous floodplain wetlands of the Macquarie Marshes, using Landsat Thematic Mapper. Journal of Hydrology 524, 194-213.

Function: download

2019-2021 inundation maps

Name: 2019-2021 inundation maps

Protocol: WWW:DOWNLOAD-1.0-http--download

Description:

Inundation maps are derived from image observations sourced from the satellite data sources of Landsat (30m pixel) and Sentinel-2 (10m pixel) for the period July 2019-June 2021.

Function: download

2021-2022 inundation maps

Name: 2021-2022 inundation maps

Protocol: WWW:DOWNLOAD-1.0-http--download

Description:

Inundation maps are derived from image observations sourced from the satellite data sources of Landsat (30m pixel) and Sentinel-2 (10m pixel) for the period July 2021-June 2022.

Function: download

2022-2023 inundation maps

Name: 2022-2023 inundation maps

Protocol: WWW:DOWNLOAD-1.0-http--download

Description:

Inundation maps are derived from image observations sourced from the satellite data sources of Landsat (30m pixel) and Sentinel-2 (10m pixel) for the period July 2022-June 2023.

Function: download

2023-2024 inundation maps

Name: 2023-2024 inundation maps

Protocol: WWW:DOWNLOAD-1.0-http--download

Description:

Inundation date maps for 2023-2024 water year.

Function: download

Unique resource identifier

Code

219182a0-02a2-4916-b21c-2e330e65f8de

Presentation form

Map digital

Edition

1

Dataset language

English

Metadata standard

Name

ISO 19115

Edition

2016

Dataset URI

https://datasets.seed.nsw.gov.au/dataset/219182a0-02a2-4916-b21c-2e330e65f8de

Purpose

Inland wetlands and environmental water managment

Status

On going

Spatial representation type

grid

Spatial reference system

Code identifying the spatial reference system

4283

Spatial resolution

30 m

Classification of spatial data and services

Field Value

Topic category

Keywords

Field Value

Keyword set

keyword value

WATER-Wetlands

WATER-Surface

Originating controlled vocabulary

Title

ANZLIC Search Words

Reference date

2008-05-16

Geographic location

West bounding longitude

140.888672

East bounding longitude

153.486474

North bounding latitude

-36.326808

South bounding latitude

-28.985844

Vertical extent information

Minimum value

-100

Maximum value

2228

Coordinate reference system

Authority code

urn:ogc:def:cs:EPSG::

Code identifying the coordinate reference system

5711

Temporal extent

Begin position

2014-07-01

End position

N/A

Dataset reference date

Resource maintenance

Maintenance and update frequency

Unknown

Contact info

Contact position

Data Broker

Organisation name

NSW Department of Climate Change, Energy, the Environment and Water

Telephone number

131555

Email address

data.broker@environment.nsw.gov.au

Web address

https://www.nsw.gov.au/departments-and-agencies/dcceew

Responsible party role

pointOfContact

Quality and validity

Field Value

Lineage

Inundation maps are derived from image observations sourced from the satellite data sources of Landsat (30m pixel) and Sentinel-2 (10m pixel) for the period July 2014-June 2019. Image observations are automatically downloaded by NSW DPIE from the USGS (Unites State Geological Survey’s Earth Explorer website (http://earthexplorer.usgs.gov ) and the Copernicus Sentinel Open Access Hub (https://scihub.copernicus.eu/dhus/#/home ) as orthorectified images. NSW DPIE process these images to standardised surface reflectance (Flood et al. 2013). Image observations with high cloud coverage (>50%) are not considered because they cannot be processed. The inundation mapping procedure is a modified version of Thomas et. al (2015) which is a method to map inundation in vegetated floodplain wetlands using an integrated spectral response to water and vigorous vegetation. From each satellite image observation NSW DPIE-EES automatically generates a water index (Fisher et al. 2016) and the NDVI vegetation index. These indices are used to allocate inundated pixels to classes of open water, mixed water and vegetation, and dense vegetation cover that was inundated (Thomas et al. 2015). A process of pixel recoding is conducted to produce each inundation map. First all inundation classes are merged and allocated a value of one (1) whilst all other pixels are allocated a value of zero (0). Second, ancillary data is then used to identify irrigation infrastructure to do two things: locate inundated pixels within off-river storages (ORS) by recoding to a value of (2) and to remove cropped areas that have similar spectral properties to wetland vegetation by coding the pixels to a value of zero (0). Third, for observation dates affected by cloud shadow, which is often incorrectly detected as water, pixels are manually reclassified as cloud shadow by recoding them to a value of three (3). The final inundation classes are inundated (1), off-river storages with water (ors) (2), cloud shadow (3), and not inundated (0). Final inundation maps are clipped to the inland floodplain wetland boundaries.

References: Fisher, A., Flood, N. and Danaher, T. (2016). Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, 175, 167-182.

Flood, N., Danaher, T., Gill, T., & Gillingham, S. (2013). An operational scheme for deriving standardised surface reflectance from Landsat TM/ETM+ and SPOT HRG imagery for eastern Australia. Remote Sensing, 5, 83–109.

Thomas, R. F., Kingsford, R. T., Lu, Y., Cox, S. J., Sims, N. C. and Hunter, S. J., (2015). Mapping inundation in the heterogeneous floodplain wetlands of the Macquarie Marshes, using Landsat Thematic Mapper. Journal of Hydrology 524, 194-213.

Constraints related to access and use

Field Value

Limitations on public access

Responsible organisations

Field Value

Responsible party

Contact position

Data Broker

Organisation name

NSW Department of Climate Change, Energy, the Environment and Water

Telephone number

131555

Email address

data.broker@environment.nsw.gov.au

Web address

https://www.nsw.gov.au/departments-and-agencies/dcceew

Responsible party role

pointOfContact

Metadata on metadata

Field Value

Metadata point of contact

Contact position

Data Broker

Organisation name

NSW Department of Climate Change, Energy, the Environment and Water

Telephone number

131555

Email address

data.broker@environment.nsw.gov.au

Web address

https://www.nsw.gov.au/departments-and-agencies/dcceew

Responsible party role

pointOfContact

Metadata date

2024-12-16T20:24:12.159883

Metadata language